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The objective of this study is to investigate the feasibility of a new pointing (position
loop) controller for the NASA-JPL Deep Space Network antennas using the Disturbance
Accommodating Control (DAC) theory. A model that includes state dependent distur-
bances was developed, and an example demonstrating the noise estimator is presented as
an initial phase in the controller design. The goal is to improve pointing accuracy by the
removal of the systematic errors caused by the antenna misalignment as well as sensor
noise and random wind and thermal disturbances. Preliminary simulation results show
that the DAC technique is successful in both cancelling the imposed errors and main-

taining an optimal control policy.

I. Introduction

Large, precision antennas for millimeter and submillimeter
wave astronomical listening require precision pointing capabil-
ity in the face of a host of nonlinear and random disturbances.
Included in this category of noise sources are structural mem-
ber deflections under wind, thermal and gravitational loading,
bearing friction torques, and hysteresis as well as electrical,
optical, and mechanical misalignments introduced by sensors,
thermal deformations, and structure model imperfections.
Traditional approaches for compensating systematic distur-
bances rely on laboratory measurements and field data and
employ open-loop (or feed-forward) compensation using static
look-up tables to refine predicted target positions. These tech-
niques, although satisfactory in sub-X-band RF pointing, are
marginal for the state-of-the-art telemetry requirements for the
upcoming Voyager-Neptune flyby and beyond. The augmen-
tation of the deep space telemetry channel to provide Ka-band
(32-GHz) capability to increase mission performance will

require 1-mdeg pointing accuracy for feasible reception at
distances greater than 20 AU. The performance advantage
between the current X-band and projected Ka-band is highly
dependent on antenna pointing accuracy. Successful deep
space telecommunications will require the NASA-JPL 34-m
and 70-m antenna pointing systems (see for example Fig. 1) to
exhibit pointing errors of 1 mdeg (rms) or better. With current
accuracy on the order of 5 to 10 mdeg, the antenna pointing
loss at 32 GHz [1] as compared to loss at X-band (8.4 GHz)
is magnified by the frequency squared. The increased gain ad-
vantage of the Ka-band could easily be lost without compar-
able enhancement in the pointing accuracy, a performance
requirement implicit to the higher gain antennas with narrower
beamwidth.

Antenna pointing~tracking errors are typically functions
of static and dynamic factors. Mechanical misalignment of
sensors or inaccuracy in the predicts can be considered static
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error sources, whereas dynamic factors would include wind,
thermal and gravitational loading, etc. The approach taken in
this study is first to achieve a static error-free environment for
precision pointing of the antenna. The philosophy employed
to achieve this goal is to treat the systematic misalignment
errors, as well as the servocommands, as disturbances to the
controlled system. Hence, as an initial phase in the sequence of
new controller design, this study addresses pointing-tracking
in the presence of noise. The research goal is intended to pro-
duce the end product controller; hence, further investigation is
necessary to augment the controller to include dynamic errors
caused by random thermal and wind disturbances.

Antenna pointing improvements can be developed through
a sequence of progressive controller modifications solely in
the existing software routines. Current algorithms can be
enhanced to simultaneously provide servotracking and correc-
tion of the systematic errors as well as beam stabilization in
the presence of random disturbance torques. For a given
antenna, servodrive, feed configuration, and surface distortion
profile a computer software package could be developed to
optimize the performance to achieve, adaptively, the maxi-
mum antenna gain for a prescribed direction vector with a
“smart” controller.

Typical antenna controllers consist of an analog rate
loop and a position loop closed through a digital computer.
The control algorithms for the position control are either
proportional-integral (PI) or state feedback control. The PI
control is accomplished by applying gains to the position
error and the integral of position error. The weighted sum of
these signals is the commanded rate for the velocity loop.
Zero steady-state error to a ramp input is realized with the
PI controller in this Type II system.

The more sophisticated method utilizing state feedback
allows specification of the eigenvalues of the closed position
loop. The initial disadvantage of the state feedback is the
requirement that all the states of the system be available
for the feedback control. The technique of state estimation
has circumvented this problem, providing the controller
with an estimate value for each of the unmeasurable or un-
certain state signals. The feedback gains are selected to yield
the designer’s selected eigenvalues to achieve desired per-
formance of the system. This technique was incorporated
in the upgrade of the 70-m antenna axis servos [2], {3] with
the estimator gain vector selection based on system specifica-
tions, minimal estimator error, and insensitivity to encoder
and digital-to-analog (D/A) quantizations.

The unique controller enhancement proposed in this study
suggests that, simultaneous with state estimation, another
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vector be estimated to represent the disturbance state which
could then be used in determining a more complete control
strategy. The philosophy of the Disturbance Accommodating
Controller (DAC) is based on the concept of state modeling
of the disturbance vector as developed in [4]. In the follow-
ing section the basics of the DAC theory are discussed as
applied to the antenna pointing problem. A history of this
DAC technique appears in [5].

ll. Theoretical Background

The antenna pointing system can be modeled by a set of
first-order linear differential equations:

X

Ax + Bu + Fw; x(0) = x
(1)

Cx

y

where x(7) is an (n X 1) state vector, u(z) is an (r X 1) control
effort vector, y(¢) is the (m X 1) output vector, and w(¢) isa
(p X 1) collective disturbance vector representing the com-
bined effects of all the uncontrolled forces/torques acting on
the antenna. For instance, w(?) can be projected to include the
effects of lateral winds, misalignments, etc. It is assumed that
w(t) cannot be predicted or measured accurately. The matrices
A, B, C, and F represent the continuous-time transmission
matrices for the respective signals.

The state variable feedback is represented by the control
law

u=-Kx @)

where K, is a feedback gain matrix, not necessarily producing
an optimum controller. Two control cases will be analyzed fur-
ther; the first assumes no disturbance F and the second case
assumes that F exists.

A. Assuming No Disturbances, F = 0

Substitution of Eq. (2) into Eq. (1) yields the closed-loop
form with no disturbances,

X = Ax - BK, x = (A -BK )x (3)

The advantage of the state feedback is the ease by which
the closed-loop eigenvalues of the system, obtained from
Eq. (3), are arbitrarily specified through the selection of the
gain matrix K, (also called the pole placement technique).
However, the pole-placement method does not guarantee that
the design is optimal. On the other hand, if the optimal con-
troller is designed, the quadratic performance technique, from



the theory of optimal control, provides the optimal steady-
state solution to the minimum control effort and minimum
transient deviation of the state from the origin problem, i.e.,

u=-Kx @

where the Kalman gain K, = -R=!B” P. The term P is a sym-
metric positive semidefinite solution to the steady-state
Riccati equation in the matrix form, that is,

ATP+PA+Q-PBR'B’P = 0 (5)

The matrices R(>0) and Q(>0) are symmetric weighting
matrices in the associated quadratic performance index for the
continuous linear regulator, that is

J(tg) = x(TYP(T)x(T)

T
+ / [xTQ()x +u"R(t)u] dt (6)
t

0

Note that the control is a time-varying state feedback; even if
A, B, Q. and R are time-invariant, Kg(t) varies with time.

Implementation of state feedback requires knowledge of
the entire state vector. In practice, however, not all state vari-
ables are available for direct measurement. Hence, a closed-
loop estimator is utilized to predict the values of the unmea-
surable state variables based on the measurements of the
output and control variables. The state estimator vector x'is
described by

.7

X

Ax'+Bu+K, (y-Cx'); x'(0) = x,
X

or

e
]

(A - KOXC)x' +Bu + Koxy @)

where Ko, is the estimator error gain matrix (n X m), and the
eigenvalues of (A - Kg, C) are commonly called the observer
poles. Recall that the system must exhibit complete observa-
bility in order to determine the state vector using the output
and control variables.

The inaccuracy, e, in the state dynamics incurred in using
the full-order (7 X 1) estimate x’ rather than the actual state x
is given by subtracting Eq. (7) from Eq. (1) (with £=0), i.e.,

e=x-x' = (A—KOXC)e ®)

where e = x - x'. From Eq. (8) it is apparent that the dynamic
behavior of the error signal is determined by the observer
poles. If the matrix (A - Kg,C) is a stable matrix, the error
vector converges to zero for any initial error e(0).

Since A, C are fixed by the system, matrix Ko, determines
the estimator performance. Again the pole-placement tech-
nique can position the estimator eigenvalues from Eq. (8) for
proper performance, that is, x" will converge to x regardless of
the initial states x(0) and x'(0). Hence, the overall closed-loop
noiseless system with full state estimator feedback can be ex-
pressed in the state variable notation as:

A | -BK

X

e
=

% K,C |A-BK_-K, C

x X

=

and
y=lerd |5 ©)
X

Note that the dynamics of the closed-loop system depend
on the eigenvalues of both the controller and the estimator.
However, the separation principle allows the independent
design of the controller and the estimator gain matrices assum-
ing the observer poles are chosen correctly.

The optimal regulator described so far accommodates only
initial conditions or impulse type disturbances and hence is
incapable of tracking or handling typical noise inputs. In the
case of finite input disturbances, the control law of Eqgs. (2)
through (9) cannot attain and maintain track, i.e., y () #y,(¢)
where .. is the commanded output.

B. Caseof F# 0

Consider now the plant equations in the form of Eq. (1)
with F # 0,

x = Ax+Bu+Fw (10)

where F is an (n X p) matrix and w(t) is a p-dimensional dis-
turbance vector. Let us formulate the optimal regulator prob-
lem in such a way that at the terminal time T, the resulting
control law always brings the state x (¢) and the velocity x(r)
back to the commanded state and velocity, x.(¢) and x.(),
respectively, in the presence of any finite constant disturbance
w(t) = k. With neither the noise nor the servocommand known
a priori, treating w(f) as either a deterministic input or a non-
deterministic input with a known probability is impractical
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since reliable information about the disturbance is not avail-
able. The primary objective of the control is to manipulate
u(t) in Eq. (10) so that the output y(¢) approaches and main-
tains the commanded value y.(¢) promptly. Hence, the prob-
lem is reduced to finding a control which minimizes the func-
tional J(u),

T
J(w) = limj Kx Qx>+ fu,it,.. )] dt (11)
0

t—=T

subject to the constraints imposed by Eq. (10) where the
vector disturbance w(0) = 0, and w(t) is assumed to satisfy
the linear differential equation:

d’w a*lw d

w
@, +a t..te, =~ +a
dr®

p=1 dfp-l

(12)
where the a; are known, real scalar constants.

The class of admissible disturbances w(z) defined in Eq. (12)
can be characterized as the set of scalar functions

w(?) = Hz(r) (13)
with H a real p X p matrix and where

(1) = Dz +o(1) (14)

where z is a real p vector and D is real matrix (p X p). The a(¢)
in Eq. (14) represents the uncertainty in the noise model. This
representation of w(¢), illustrated in Fig. 2, shows that the
optimal controller is designed by first building a duplicate
model for the disturbance process typified by Egs. (13) and
(14). This noise estimator is driven by the vector Cx(#), as is
the plant state estimator. The noise estimate and the system
state estimate are weighted and summed to yield the control
law u(t). As t=T, x(t) approaches the steady-state x(¢) = x,(¢)
prior to any change in the state command.

Mathematically the noise is not precisely known. Hence,
the o(f) represent completely unknown sequences of random-
intensity, random-occurring, isolated delta functions. Antenna
experimental data have shown that the alignment uncertainty
exhibits the less than noisy properties of a stochastic process,
and thus, in this particular case, Eq. (13) appears to be a rea-
sonable model of the systematic disturbances.

The control law is effectively divided into two parts; that is,

u=utu, (15)
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where w is assigned the task of servoregulation, and the com-
ponent u; is responsible for counteracting both disturbances,
w(t) and the reference signal y (¢) in servotracking. In the case
of regulation, y.(¢) = 0, the control u; must be capable of
satisfying the relation

B(t)u, (t) = -F(t)w(r) = -FHz(t) (16)
for all admissible w(#) in order to cancel out the disturbance
F. Johnson in [5] has shown that if the rank of [B|FH] =
rank of [B], then

-F(H(1) = -B()K, (1) a7

for some gain matrix K,(z). Failure of this condition means
that some residual effect of w(f) will always occur. Assuming
Eq. (17) is satisfied, the counteraction torque, uy, is

uy(t) = -K,()z(r) (18)

and the regulation control, u, is chosen by the conventional
means as

ug(r) = K, (0)x(r) (19)

The open-loop system augmented to include the noise state
is described by

X A | FH x B 0
2z 0| D z 0 o
(20)
X
y=1[Cl0] |—
z

The exact closed-loop state and disturbance state vectors,
assuming all states are available for measurement, are described
by the differential equations

% A—Ble FH-BK, | |x 0
=+ [— | @D
: 0 \ D 2| o)

Redefining the representation of Eq. (20) so that the new

- state vector includes both system and disturbance states gives



X
X =|—| =Ax+Butd
F
(22)
Yy =Cx

Examination of Eq. (21) reaffirms the criterion set forth in
Eqg. (17) to eliminate the noise term in the system state equa-
tions. However, an obvious problem arises: how is it possible
to access the actual disturbance state z(¢)? Of course, z(¢) is
not completely measurable, but it is possible to resort to esti-
mator theory once again to observe and predict the noise state
in an approach similar to that used in the plant state estima-
tion. Hence, an appropriate control is obtained by replacing
the actual noise state in Eq. (18) with the estimate of the noise
state z'(t), i.e., where estimates of z(z) and x(¢) can be ob-
tained from y (¢#) by on-line, real-time state reconstruction.
In general K, (7) is shown to be not unique [4].

The actual closed-loop plant state x (), with the assumption
that all states are available for measurement, and the disturb-
ance state error variable e,(r) are described by the differential
equations

x A -BK | FH-BKy, X 0
— + | —
£, 0 D+FH e, a(t)

where e = z - z', with Kg, the appropriate observer gain for
the disturbance state estimator.

Examination of Eq. (23) reveals that if e, is zero, the be-
havior of x(¢) is totally independent of the disturbance w(¢).
Of course, the ideal case is rarely realized; however, Koz(t)
is chosen so that e,(#)>0 rapidly for all initial values of x,
zy, e so that the closed-loop plant state x(¢) is essentially
insensitive to external disturbances that can be generated by
Eq. (14).

Using the composite model of Eq. (22), the corresponding
augmented state estimator vector x'(¢) is described through
observer theory as

X' = Ax"+Bu+Ky(y-Cx')
or

%= (é~50§)£'+§£+1_<0z (24)

where K, the composite estimator gain matrix, is chosen to
force x'(f) = x(f). Using the same principle mentioned earlier
in Eq. (8), the eigenvalues of (A - K,C) are chosen for the
augmented system. The practical control law for servoregula-
tion in the face of noise becomes

u@®) = K (Ox'() = -K,0x'(-K,02@)  (25)

where z', x' are the estimates of z(z) and x(¢), respectively,
obtained from y (f) by on-ine, real-time state reconstruction,
and -K, (#)x'(¢) is the control required to minimize a perfor-
mance index if the disturbances were not present in Eq. (10).
In general K,(2) is not unique, as shown in [4].

The system is reorganized now to include servotracking
rather than just servoregulation. Similarly the servocommand
can be treated as a “disturbance” to the plant. Recall that the
primary control objective in the antenna pointing system is
that of servotracking y (), where in general the command is
related to the system variables (xq, . . ., x,,) by the equation

»(1) = TOx(1) (26)

In this case, the objective is to control the plant output y (¢) so
that C is equal to C in Eq. (1). The behavior of y, is assumed
expressible by the servocommand model

1

G(t)e(t)

E(#)e(t) + u(®)

y ()
27

é

where G(z), E(f) are determined beforehand by appropriate
modeling procedures, and ¢ represents the servocommand
state vector. The vector u(r) represents the uncertain impulse
sequences, similarly introduced in the disturbance model in
the form of o(z). Note that in the case of set point regulation,
¥, is essentially a constant, and hence E(f) = 0 and G(?) is
the identity matrix with the assumption that the y; are inde-
pendent outputs. In servotracking, the y.(¢) are allowed to
vary continuously with time and E(¢) is chosen accordingly.
Exact servotracking cannot be realized unless the servocom-
mand error ¢ = Ge - Cx is zero. Hence, &, must be chosen so
that (y,—») rapidly approaches the null space of C for all
initial conditions.

Hence, the three individual plant, disturbance, and servo-
command models can be combined into a single composite
open-loop model

x

= Ax+Bu+é (28)

1%
|

F4
é
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where
A|FH| O B 0
a= folnlo| .B= [o] 5= |o0
0| o|E 0 )
y = CxwhereC = [C|0]O].

Figure 2 illustrates the continuous-time system with the
DAC installed. The solution approach is as follows. An appro-
priate generic control law for servotracking in the face of noise
follows as

u = -N@Oz'() - K ()x'(t) - K (1) (1) 29

Utilizing the servocommand state estimator, the closed-loop
plant can be described as

% = (A-BK )x+(-BK, + FH)z' - BK ¢’
+B[-K,(z-2)-K,Gx-x)-K(c-c)]  (30)

With the appropriate choices of the gains, K., K, , K, the esti-
mate errors will approach zero quickly and the noise terms in
z should have no effect on y(¢).

lll. Mathematical Models for the
Discrete-Time DAC

The continuous-time model of the disturbed dynamical sys-
tem described in Eq. (1) can be transformed into a discrete-
time prototype for investigation of an analog plant controlled
by a digital computer. For simplicity, assume that the signal
sampling time is coincident with the control effort application
time. In feedback controller designs, control decisions are de-
termined in light of real-time data provided to the controller
through sensors. The term “sampled-data” denotes data pro-
vided to the controller which are updated only at specific
isolated points in time. Between these updates, the data pro-
vided to the controller typically are held constant. Likewise,
the control decisions are updated only at specific isolated
times. In between the decision updates, the control action
u(t) either remains constant or follows a prescribed interpola-
tion rule. The computer or digital controller is capable of pro-
cessing only sampled-data and executing discrete-time control
policies usually written as difference equations.

An appropriate discrete-time representation of the system,
disturbances, and servocommands, analogous to the continu-
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ous model, is required for the investigation. Reference [6]
derives the discrete composite state variable representation
with the assumption that the noise is not state dependent, i.e.,

x[(n+ 1)T] A(nT)| FH(nT)| 0 x(nT)
2ln+ DT = 0 | D7) | 0 2(nT)
c[(n+ 1)T] 0 0 | E@T)| |c(T)
B(nT) ¥(nT)
+| 0 | u(T)+ | o(nT)
0 u(nT)
x(nT)
y(rT) = [C(xT)[010] | z(nT)
c(nT)
€2))

where the discrete-time plant matrices are

A(T) = ®, [[t+ (0 + DTty +nT]]

ne>

plant state transition matrix in discrete time

tO+(n+1)T
B(nT) [ P, [to+(n+1)Tr] B(r)dr
'

+
0nT

]‘t0+(n+1)T
t0+nT
T
X [ B (7 E)o(EME | dr
t0+nT

IO+(n+l)T
f ®, [[t0 +(n+ I)T,T]:]
'

+
onT

y[(n+ DT] @, [ty + (n+ )T,7] FOH()

FH(nT)

X F(r)H(7) @, (7,ty + nT ) dr



and the discrete-time noise terms become

D(T) = &, [[ro +(n+ DTty + nT]]

e

noise state transition matrix

r0+(n+1)T
o) f &, [t + (1 + 1)TE] o(e) de
t
0

+nT

(32)

In the time-invariant case, the matrices A, B, C, F are con-
stant element matrices, and Eq. (32) is simplified to

A = AT
D = ¢PT
T
B = eAT-7) Bdr
(]
T
v = EA(T'T) FH
0

(33)

T
X [ eD(r-6) o¢ +t,+nT)dE| dr
0

T
FH=/ eAT=1) by P g7
0

T
g = f eP(T-8) ok + 1y +nT)dk
. )

Similarly, the discrete-time servotracking state model of
Eq. (27) can be represented in the form

y(nT) = G(nT)c(nT)

(34)

cl(n+1DT] = EMTYc(nT)+ u(nT)

where

E(nT) = &g [(n+1)ThT]
4 discrete transition matrix for
the servocommand
(35)
tO (n+1)T
u(nT) =
to+nT
X @ [ty + (1 + DTE] p(®)dt
In the time-invariant case, Eq. (35) is reduced to
EmT) = &7
(36)

T
u(nT)=j ET=9 y(t + 1 +nT) g
0

The model may be generalized further to include various
exceptional case studies [5]. For example, the antenna sys-
tematic errors appear to be dependent on the particular
azimuth/elevation position of the target; hence, the noise
w(?) can be made a function of the system orientation or
of the state of the plant. In this case the disturbance model
can be augmented to include the state dependency by adding
extra terms as follows:

wnT) = HnT)z(nT)+ L(nT)x(nT)
z[(n+ DT] = D(T)z(nT )+ M(nT)x(nT) (37

+a(nT)

In this case it is necessary to derive the appropriate rela-
tionships from the continuous to discrete-time case in order
to ascertain the mathematical meaning of the additional terms
L(nT) and M(nT) in Eq. (37). These relations are given in
Eq. (38).
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x[(n+1)T] A(nT) ‘ FH(nT) x(nT)

z[(n+ 1)T] M(nT) \ D(nT) z(nT)

B(nT)
+ u(nT)
0
(38)
v,(nT) +7,(nT)
+ —_—
a(nT)
x(nT)

y(nT) = [C(nT) | O]

z2(nT)

where in the time-variant case,

T
7, [+ DT] = / A=) FH
0

.
X /eD<f-f)x(z+z0+nr)dg dr
0

and

T
M(nT) = / LT-D Lx(t+ty+nT)dr
0

Construction of the on-line, real-time estimation of the
three states—plant state x(¢), disturbance state z(z), and the
command state c¢(¢)—requires the discrete-time state estimator
given by

34

x'[(n+ 1T] A(nT) FH(nT) 0 x'(nT)
Z'[(n+ DT]| = 0 0 0 2'(nT)
c'[(n+ 1DT] 0 0 EnT) ¢'(nT)
B(nT) Koy
+ 0 | uaT)+ |K,,
0 KOc
CnTY1 0| 0| |x(nT)
X C(nT)Y | 0t Of [z(nT)
0O (0|0 c(nT)
y(nT)
- | y(T) (39)
y.(nT)

where u(nT), y (nT) and y.(nT) denote the inputs to the ob-
server. The matrices K., K,, K, are arbitrary gain matrices
that the DAC designer selects in accordance with the desired
estimator response.

In order to establish the dynamics of the estimators, con-

sider the state errors e, e, and e, defined as

e, = x(nT)-x'(nT)
e, = 2(nT)-z'(nT) (40)
e =c(nT)-c'(nT)

These error dynamics are described by the discrete equations
derived from Eq. (39), considering only first-order variations, as

e [(n+ D)T] A+K, C FH 0
e,(n+)T]| = | K,,C D 0
e [+ 1T] 0 D E+K,G
e,iT)|  [vnT)
X |e,mT)| + |ouT) (41)
e,(aT)|  |unT)



In order to produce reliable estimates, the observer gain
matrices (K. Ko,. K ) are chosen so that the errors in
Eq. (40) decay toward zero rapidly between control updates.
Hence the homogenous solution of Eq. (41) is made asymptot-
ically stable to the errors equal to zero. In general, Eq. (41) is
a time-varying set of difference equations. The gains K,
Ky, Ky, can be solved using the discrete Riccati equation
from optimal control theory. For the case of constant element
matrices 4, C, FH, D, the design of the estimator gain matrices
can be accomplished by the conventional eigenvalue placement
method. Defining the error dynamics as a system with a char-
acteristic matrix 4,

(A+K,) FH 0
K,,c D 0 (42)

0 0 (E+K,G)

the eigenvalues are positioned suitably (say, at zero) within
the unit circle. A block diagram of the composite observer is
shown in Fig. 4.

IV. Determination of the Discrete-Time
Control Function u

The determination of the control function u in the discrete-
time case involves several steps.

(1) The state estimators are weighted and summed to
determine the control law, i.e.,

u(nT) = flx'(nT), ' (nT),z'(nT), nT) (43)

(2) The control function is divided into two subtasks as
mentioned previously,

u(nT) = us(nT) + ud(nT) (44)

where the component U is responsible for the servoreg-
ulation and the u, effort is assigned the task of distur-
bance removal including servotracking. Substitution of
Eq. (44) into Eq. (27) yields the plant state relation:

x((n+ 1)T) = A(nT)x(nT )+ B(nT )u (nT)
+B(nT)u (nT )+ FH(nT)z(nT)

+y(nT) (45)

Since the control effort in a discrete-time control problem
is usually held constant between two consecutive sampling
times, it is impossible generally to remove all the disturbance
effects. Likewise, the presence of the uncertainty sequence
v(nT) also limits the idea of complete time cancellation of the
noise. Hence, the concept of ‘“‘complete cancellation’ means
only that the noise effects FHz(nT) are removed as they
appear at isolated sample times, i.e.,

B(nT)u,(nT)+FH(nT) z(nT)+E(nT) ¢(nT) =0
(46)

The condition for existence of uy(nT') to satisfy Eq. (46) is
[FH 1 4,] = B[K, | K]
Complete disturbance cancellation exists if, and only if,
FH(nT) = -B(nT)K (nT)
and
E(nT) = -B(nT)K (nT) (47)

for some matrix K,(nT) and K (nT'). Assuming the conditions
of Eq. (47) are satisfied, the control u4(nT') can be chosen in a
practical sense as

u,(nT) = K ,(nT)2'(nT) - K (nT)c'(nT)  (48)

where z'(nT) is the noise state determined by on-line, real-
time estimation of z(nT ). The enclosed loop error dynamics
using e, , e, may be incorporated into the model as

x[(n+1D)T] = AnT) x(nT)+ B(nT) u(nT)
- [B(nT)K (nT)] e (nT)

- [B(rT) K _(nT)] e (nT )+ v(nT)
(49)

Hence, the noise effects have been reduced to the (BK,e,
+ BK _e_) term, which should decay rapidly toward zero, and,
of course, the isolated uncertainty sequence y(nT). The servo-
regulating control, u(nT), can now be designed by conven-
tional methods assuming the noise has been removed.

A complete block diagram of the original continuous-time
plant model, and the proposed DAC with full state discrete-
time composite observer, is shown in Fig. 4, with the control
law

1N
n

K x
pd

35



and

u, = -K 2 -K.c¢ (50)

V. Summary of DAC Procedure

(1) The disturbance w(¢) is determined experimentally to
ascertain distinguishing characteristics. Suppose that
w(t) is noted to consist of an uncertain bias at times
and in other intervals w(?) exhibits uncertain ramp fea-
tures. Thus, the waveform of the disturbance has a
general form

w(t) = k, +kt (51)

where k,, k, are unknown constants which change
value at unknown times.

(2) With the description of w(r), the designer determines
the simplest differential equation model for this class
of disturbances, that is, the lowest order differential
equation for which Eq. (51) is the general solution.
The corresponding DAC matrices H, D are determined
from the general form given in Eqgs. (13) and (14). In
observable canonical form the model becomes

w()=[10] | (52)

1]
-+

(53)

where (bu bz) are constants. The characteristic poly-
nomial of the disturbance model D is equated with the
resulting characteristic polynomial attained from the
Laplace transform of Eq. (51), that is,

det [N~D] = N +b A+b = )\ (54)

and in this example, b, and b, equate to zero.

(3) The controller problem is separated into two subtasks,

u = u tu, (55)

such that u_ performs servoregulation and u is respon-
sible for servotracking a command input and the distur-
bance removal. Hence, the control effort « is chosen
for regulation assuming no noise; typically,
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u = K x (56)

5

The control law u, has the form
u, = Kz-K_c (57)

where K, and K are chosen to ensure disturbance re-
moval and tracking, respectively.

(4) With available software tools, the equations can be
incorporated into a single system simulation—see
Eq. (28)—and tested for various noise inputs and
servocommands.

VI. Test Model

A simplified test model for an antenna servomechanism is
used to illustrate the DAC procedure (refer to Fig. 3). The
objective is to control the elevation of an antenna designed
to track an RF signal. The antenna and its drive mechanism
have a moment of inertia J and damping B arising from bear-
ing friction, aerodynamic friction, and the back emf of the
dc-servodrive motor. The equations of motion are

JG+B6 =T +T, (58)

where T, is the net torque developed by the drive motor, and
T, represents the disturbance torques possibly due to wind,
static misalignments, etc. Substitution of the assumed coeffi-
cients in Eq. (58) yields:

G+10+660 = u+w (59)

In this example, the coefficients for Eqs. (58) and (59)
were arbitrarily selected and may be unrealistic. They were
selected, however, to describe the effect of the new DAC con-
troller. The general shape of the servocommand angle 6 (¢) is
assumed to be composed of step and ramp functions. Hence,
the servocommand 6.(¢) is modeled by y, estimated using the
commanded rate 6.(7), and the acceleration 8(z). For the pur-
pose of maintaining a good tracking accuracy, it is reasonable
to assume that the antenna drives are capable of following the
peak velocity éc(t) in the steady state with acceptable error.
Since the objective is to permit acceptable communication
signal reception, the dependence of the signal amplitude on
pointing error is a major concern. The corresponding servo-
command can be represented by the following state-space
representation:

é(t) = E(@)c(0) + u(r)
(60)
Y1) = G c(t)



Similarly the disturbance w(¢) (assumed to be step and ramp
torques in this example) can be modeled as suggested in
Eq. (54),

w(t) = Hz(Y)
(61)
z2(t) = Dz(2) t+ o(2)

Thus, the open-loop system can be represented in the form of
Eq. (28) where

0 1 0
A= s F=8B-=
-6 ~1] 1
..O 1--
D=E-= . G=C=[10]
LO 0_
H=[1 0]

The state feedback gains have been chosen with K, = [94,
19] to ensure the undisturbed system closed-loop poles at
-10, -10. The estimator poles for the plant, noise, and servo-
command states are selected in the usual manner using pole-
placement techniques for approximately 3 to 5 times faster
response than the combined plant and feedback controller.
A computer simulation of the closed-loop model in Eq. (28),
shown in Fig. 5, is used to demonstrate the effectiveness of
the DAC in disturbance rejection. Figure 6(a) illustrates the
controlled output variable 8(¢) servotracking the command
input 8.(¢) without the DAC. The disturbance assumed in
this example is plotted in Fig. 6(b) with the controlled vari-
able y (7). Without control other than state feedback, the
output is unable to distinguish the control input from the
disturbance and tends to follow the noise signal rather than
the servocommand.

In Fig. 7(a) and (b), the same example with the inclusion of
the DAC demonstrates the effective servotracking of the com-
mand in the presence of the noise input. Note that only a
slight perturbation occurs in the controlled variable y (f) at
approximately 5.0 s just as the disturbance has occurred.

The analogous discrete-time system has been simulated to
demonstrate the degradation expected in tracking when the
position-loop of the controller is implemented via a digital
computer. Figures 8 and 9 display the discrete-time system
in a noisy environment both with and without the DAC incor-
porated in the loop, assuming a sampling time 7= 0.1 second.

VIl. Conclusions

The feasibility of implementing a disturbance accommodat-
ing controller has been investigated as applied to an analog
servodrive for positioning an RF antenna. The DAC is designed
for synthesizing and rejecting waveform-structured distur-
bances. The form of the systematic pointing errors inherent
in antenna tracking systems appears viable to this character-
ization of the disturbance as structured waveforms rather
than the noise generated through random processes with sta-
tistical descriptors. The waveform type of disturbances can
be modeled according to a priori data by determination of the
corresponding differential equation, and hence, the state
representation of the waveform structured noise.

In this study. simulation results show that the DAC is an
appropriate technique for cancellation of the systematic
errors, while simultaneously allowing an optimal control
policy to regulate the system. The ease with which the DAC
is implemented along with the existing servo-control is another
attribute of this technique. Practical implementation issues
such as model order., computation time, and storage require-
ments offer no expected challenges for microprocessor-based
controllers. Further study is necessary to incorporate the
state-dependency issue in regard to systematic pointing errors
expected in antenna position controllers.
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Fig. 2. Functional diagram of the servotracker with the DAC installed
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Fig. 3. Simplified block diagram of the plant and state feedback controiier with composite
estimator for servotracking
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Fig. 4. Configuration for the discrete-time disturbance accommodating controller (DAC)
included in a digital servotracking system; slashes represent changes required to include the
DAC in a typical state estimate feedback controller scheme
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Fig. 5. Simulation model for the DAC servocommand example
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. Fig. 8. Servocommand response for the discrete-time example
without the DAC installed: (a) servocommand input and controlled

variable; (b) disturbance input and the controlied variable y(t)
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Fig. 9. Servocommand response for the discrete-time example
with the DAC installed: (a) servocommand input and controlled
variable; (b) disturbance input and the controlled variable y(t)



